Sand Resources of Southeastern Lake Michigan

by

Edward P. Meisburger, S. Jeffress Williams,
and Dennis A. Prins

MISCELLANEOUS REPORT NO. 79-3
JULY 1979

Approved for public release; distribution unlimited.

U.S. ARMY, CORPS OF ENGINEERS
COASTAL ENGINEERING RESEARCH CENTER
Kingman Building
Fort Belvoir, Va. 22060
Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

National Technical Information Service
ATTN: Operations Division
5285 Port Royal Road
Springfield, Virginia 22161

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
ABSTRACT

About 2,072 square kilometers (800 square miles) of the eastern shore of Lake Michigan between Manistee, Michigan, and Burns Harbor, Indiana, was surveyed to assess potential sand and gravel resources. The survey data consist of 915 kilometers (569 miles) of high-resolution seismic reflection profiles, side-scan sonar records, and 93 cores a maximum of 6.1 meters (20 feet) long. Bathymetric survey limits are the -3.7-meter (-12 feet) contour lakeward to about the -37-meter (-120 feet) contour. The most common sediment types found (continued)
are clean, fine to coarse quartz sand and silt and clay. Sand appears to predominate in surface deposits and to be the primary constituent of shoals and ridges present in several locales. Silt and clay deposits are the most common subbottom sediment type; clay, gravel, and till-like mixtures of sandy-silty pebbles occur locally. Indurated shale occurs in the area near New Buffalo, Michigan. Results show that the highest potential for sand is in the area between Whitehall and Saugatuck, Michigan. Smaller deposits appear to occur between Manistee and Whitehall, Michigan, and from Saugatuck to 15 kilometers (9.3 miles) south of Benton Harbor, Michigan. The region with lowest potential for sand resources is from Benton Harbor south to Burns Harbor, Indiana, where a thin veneer of sand overlies silt and clay.
PREFACE

This report on sand resources of southeastern Lake Michigan is one
of a series which presents results of the Inner Continental Shelf Sed-
iment and Structure (ICONS) study. The primary objective of the ICONS
study is to locate offshore sand and gravel deposits suitable for beach
nourishment and restoration. The work is carried out under the coastal
processes program of the U.S. Army Coastal Engineering Research Center
(CERC).

The report was prepared by Edward P. Meisburger, S. Jeffress Williams,
and Dennis A. Prins, under the general supervision of Dr. C.H. Everts,
Chief, Geotechnical Engineering Branch. The manuscript was reviewed by
Dr. Everts and Dr. R.M. Sorensen (at the time Acting Chief, Engineering
Development Division).

Data collection was conducted by CERC with the assistance of three
U.S. Army Engineer Districts (Chicago, Detroit, and Mobile) and the U.S.
Army Engineer Waterways Experiment Station.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th
Congress, approved 31 July 1945, as supplemented by Public Law 172,
88th Congress, approved 7 November 1963.

TED E. BISHOP
Colonel, Corps of Engineers
Commander and Director
CONTENTS

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) .. 6

I INTRODUCTION ... 7

II PROCEDURES ... 7
 1. Seismic Survey .. 7
 2. Core Boring ... 15
 3. Navigation Control ... 15

III RESULTS .. 16
 1. Geologic Character of the Study Area ... 16
 2. Segment Description ... 19

IV SUMMARY .. 29

APPENDIX
A SEISMIC REFLECTION PROFILES ... 31
B CORE LOGS .. 39
C GRANULOMETRIC DATA .. 56

TABLES
 Grain-size scales (soil classification) .. 18

FIGURES
1 Lake Michigan study area .. 8
2 Survey coverage map 1 area .. 9
3 Survey coverage map 2 area .. 10
4 Survey coverage map 3 area .. 11
5 Survey coverage map 4 area .. 12
6 Survey coverage map 5 area .. 13
7 Survey coverage map 6 area .. 14
8 Bathymetry and sand potential, segment division 1, map 1 area 20
9 Bathymetry and sand potential, segment divisions 2 to 6, map 2 area 21
10 Bathymetry and sand potential, segment divisions 7 to 11, map 3 area 22
<table>
<thead>
<tr>
<th>FIGURES--Continued</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Bathymetry and sand potential, segment divisions 12, 13, and 14, map 4 area.</td>
<td>23</td>
</tr>
<tr>
<td>12 Bathymetry and sand potential, segment divisions 15 to 19, map 5 area.</td>
<td>24</td>
</tr>
<tr>
<td>13 Bathymetry and sand potential, segment divisions 19 and 20, map 6 area.</td>
<td>25</td>
</tr>
</tbody>
</table>
Conversion Factors, U.S. Customary to Metric (SI) Units of Measurement

U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>25.4</td>
<td>millimeters</td>
</tr>
<tr>
<td></td>
<td>2.54</td>
<td>centimeters</td>
</tr>
<tr>
<td>square inches</td>
<td>6.452</td>
<td>square centimeters</td>
</tr>
<tr>
<td>cubic inches</td>
<td>16.39</td>
<td>cubic centimeters</td>
</tr>
<tr>
<td>feet</td>
<td>30.48</td>
<td>centimeters</td>
</tr>
<tr>
<td></td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>square feet</td>
<td>0.0929</td>
<td>square meters</td>
</tr>
<tr>
<td>cubic feet</td>
<td>0.0283</td>
<td>cubic meters</td>
</tr>
<tr>
<td>yards</td>
<td>0.9144</td>
<td>meters</td>
</tr>
<tr>
<td>square yards</td>
<td>0.836</td>
<td>square meters</td>
</tr>
<tr>
<td>cubic yards</td>
<td>0.7646</td>
<td>cubic meters</td>
</tr>
<tr>
<td>miles</td>
<td>1.6093</td>
<td>kilometers</td>
</tr>
<tr>
<td>square miles</td>
<td>259.0</td>
<td>hectares</td>
</tr>
<tr>
<td>knots</td>
<td>1.852</td>
<td>kilometers per hour</td>
</tr>
<tr>
<td>acres</td>
<td>0.4047</td>
<td>hectares</td>
</tr>
<tr>
<td>foot-pounds</td>
<td>1.3558</td>
<td>newton meters</td>
</tr>
<tr>
<td>millibars</td>
<td>1.0197×10^{-3}</td>
<td>kilograms per square centimeter</td>
</tr>
<tr>
<td>ounces</td>
<td>28.35</td>
<td>grams</td>
</tr>
<tr>
<td>pounds</td>
<td>453.6</td>
<td>grams</td>
</tr>
<tr>
<td></td>
<td>0.4536</td>
<td>kilograms</td>
</tr>
<tr>
<td>ton, long</td>
<td>1.0160</td>
<td>metric tons</td>
</tr>
<tr>
<td>ton, short</td>
<td>0.9072</td>
<td>metric tons</td>
</tr>
<tr>
<td>degrees (angle)</td>
<td>0.01745</td>
<td>radians</td>
</tr>
<tr>
<td>Fahrenheit degrees</td>
<td>5/9</td>
<td>Celsius degrees or Kelvins(^1)</td>
</tr>
</tbody>
</table>

\(^1\)To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: \(C = \frac{5}{9} (F - 32)\).
To obtain Kelvin (K) readings, use formula: \(K = \frac{5}{9} (F - 32) + 273.15\).
SAND RESOURCES OF SOUTHEASTERN LAKE MICHIGAN

by
Edward P. Meisburger, S. Jeffress Williams, and Dennis A. Prins

I. INTRODUCTION

The construction, improvement, and periodic maintenance of beaches and dunes by placement of suitable sand along the shoreline is an important means of counteracting coastal erosion and of enhancing coastal recreational facilities (U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977).¹ In recent years, it has become increasingly difficult to obtain large volumes of suitable sand from lagoons and inland sources because of diminishing resources as well as economic and ecological factors. Accordingly, the Coastal Engineering Research Center (CERC) initiated an Inner Continental Shelf Sediment and Structure (ICONS) study to locate offshore sand resources suitable for beach fill. This report deals with the location and physical characteristics of offshore sand resources in parts of eastern and southern Lake Michigan.

A zone adjacent to the shore about 4.8 to 9.7 kilometers (3 to 6 miles) wide, extending from Manistee, Michigan, to Burns Harbor, Indiana, constitutes the study area (Fig. 1). Survey coverage of the area is shown in Figures 2 to 7. Collected data consist of 915 kilometers (569 miles) of reflection profiles and 93 cores ranging from 0.6 to 6.1 meters (2 to 20 feet) in length. In addition, side-scan sonar and low-energy seismic reflection records of each core site were obtained during coring operations. These data were supplemented by pertinent scientific and technical literature and National Ocean Survey (NOS) hydrographic data.

This report is primarily the result of a reconnaissance effort; seismic line spacing and core density are not suitably detailed for reliable delineation of offshore borrow sites. Consequently, denser data coverage and more detailed study of potential borrow sites are needed before final site selection is made for project design and construction.

II. PROCEDURES

1. Seismic Survey.

Seismic reflection profiles were run along the coast of the study area following a zigzag pattern in an onshore-offshore direction (Figs. 2 to 7). Two seismic reflection profiling systems were operated simultaneously during the survey (a high-energy "boomer" system of 0.4 to 14

Figure 1. Lake Michigan study area. Location of survey coverage maps and general information maps shown in rectangles.
Figure 2. Survey coverage map 1 area.
Figure 3. Survey coverage map 2 area.
Figure 4. Survey coverage map 3 area.
Figure 5. Survey coverage map 4 area.
Figure 6. Survey coverage map 5 area.
Figure 7. Survey coverage map 6 area.
kilohertz and 300 joules maximum power). The maximum depth below the lake floor where reflections are recorded on the boomer system which has the greater penetration potential, varies from 0 to more than 37 meters (120 feet). A "pinger" system achieved penetration of 0 to 15 meters (50 feet).

In addition to seismic reflection profiles run during the geophysical survey, a small pinger system (3.5 kilohertz; 25 joules) and side-scan sonar were used during the coring phase of the operation to record conditions in the immediate vicinity of each core site, and if time permitted, to run a continuous line between adjacent core sites. These data proved useful in assessing the bottom and very shallow subbottom conditions at core sites.

2. Core Boring.

After preliminary inspection of seismic reflection profiles, 93 core boring sites were selected. Cores at each of these sites were subsequently taken using a vibratory coring apparatus which obtains a nominal 8.9-centimeter-diameter (3.5 inches) core up to 6.1 meters (20 feet) in length at full penetration. After visual inspection, representative sediment samples were extracted from each core and grain-size distributions were measured by a rapid sediment analyzer (RSA) to determine the hydraulic diameter of particles by measuring their fall velocity in water (Schlee, 1966). Lithologic descriptions of samples and core logs were also made by direct visual and microscopic examination of bulk properties and constituent composition.

The position of the survey vessel and the coring platform was determined by a Mini Ranger III navigation system. This line-of-sight system provides continuous location data from two shore stations to a master station aboard the survey vessel. In general, fixes were recorded at 2-minute intervals throughout the seismic reflection survey. Because of scale restrictions, only end fixes are shown on the survey coverage charts in Figures 2 to 7.

Because of the occasional loss of signal from the shore station to the master station caused by the inability to maintain line-of-sight between one of the shore stations and the survey vessel, the position was sometimes best determined by dead-reckoning and range data from one shore station. Also, since there was a lack of good horizontal survey control in some areas along the shoreline, the shore stations were occupied and the position plotted on a 1:24,000-scale map sheet. The grid values were then picked off the map sheet and used in the triangulation calculations to determine the position of the survey vessel. The accuracy of the position fixes is estimated to be within ±30 meters (100

feet). The accuracy of the position fixes using the dead-reckoning and one-range method is estimated to be ±1.8 kilometers (1 nautical mile) in the worst case.

III. RESULTS

1. Geologic Character of the Study Area.

 a. Bottom Topography. Depths in the study area generally increase lakeward and at the lakeward limit of survey vary from about 18 to more than 61 meters (60 to 200 feet). The most prominent lake floor relief features were submarine ridges or bars which vary from subtle, low relief undulations to distinct ridges with relief up to 6.1 meters. These shore-parallel features occur throughout the study area but are most common in the northern half. Internal reflectors in some of the larger ridges indicate that their internal bedding consists of foreset series with accretion progressing in a lakeward direction (e.g., profile 9 in App. A). Cores indicate that most, if not all, of these ridges are composed of unconsolidated sand. Near Pentwater and in the Holland area (Fig. 1) the lake floor is roughened by sets of sand waves up to 1.5 meters (5 feet) high. These may be ephemeral features which reshape or shift position in response to prevailing hydrodynamic conditions; however, study data provide no evidence on this supposition. Other lake floor features consist mostly of aggregates of submarine hills and ridges which are highly irregular in distribution, shape, and relief. This topography suggests a relict glacial surface. Areas of smooth almost featureless lake floor occur interspersed with the topographically irregular areas throughout the study area.

 b. Subbottom Structure. The seismic reflection profiles for this study reveal some elements of the shallow geological framework of southeastern Lake Michigan. Deeper features associated with pre-Pleistocene bedrock are generally below the depth of penetration of the seismic systems; however, it is the shallow reflectors that are most important in sand resources investigations and shallow reflector continuity is reasonably good throughout the study area. In general, the maximum depth of penetration and reflector continuity is greatest in the southern half of the area where acoustically transparent silt often occurs. Sand is dominant in the northern half except in offshore areas where thick segments of lake muds often underlie the bottom.

The absence of subbottom reflectors on the records or very shallow penetration may have been caused by the impenetrability of surficial or near-surficial deposits. Alternately, penetration may have been quite deep but the section penetrated was acoustically homogeneous and lacked suitable reflecting surfaces. Probably both factors are involved at different places. More powerful sound sources would reveal subbottom reflectors in the former case, but not in the latter case.

The interface between the first or surface sediment layer and underlying sediments is of particular interest in sand resource studies because
it often marks pronounced changes in lithology. If this interface produces a reflection, the thickness of the first layer can be determined directly from seismic reflection profiles. Where the first layer consists of suitable sand, available volumes can then be estimated. Where the first layer is unsuitable but overlies suitable deposits, the overburden thickness can be measured in the same manner.

A persistent reflector, believed in most places to mark the interface between the surficial layer and underlying deposits composed of different material, occurs in eastern Lake Michigan. This reflector (here called the blue reflector) was traced from line to line over a substantial part of the study area, but could not always be followed continuously. Gaps occur either because of poor record quality or insufficient acoustic contrast at the interface. The blue reflector is noted on the reduced profiles in Appendix A.

c. Sediment Characteristics. Brownish-colored quartz sand and light-gray silty clay are the dominant sediment lithologies found in cores from the study area (see Table). Gravel, sandy gravel, till, and shale occur locally. Where sampled the surficial sediments above the blue reflector consist of quartz sand which is fairly uniform in composition throughout the area.

Core data are not adequate to determine the distribution and character of deposits below the blue reflector. Available data suggest that these sediments probably consist chiefly of clay and silt in the area between Manistee and Pentwater, in the northern part of the area, and from Saugatuck to Burns Harbor in the southern part. Between Pentwater and Saugatuck, sand apparently underlies the blue reflector in many, if not most places; however, gravel and till-like deposits of silt, sand, and gravel occur in a few places between Saugatuck and Benton Harbor.

Sand from the study area is typically a light-brownish color (Munsell Soil Color Code 10 yr 5/3 to 10 yr 7/3) (Munsell Soil Color Charts, 1954 ed., Munsell Color Co., Inc., Baltimore, Md.). It is fine to coarse in size (Wentworth Scale) and contains little or no silt or clay. Microscopic examination of a few representative samples indicates that 80 to more than 90 percent of the grains are quartz with the remainder principally black opaques, and pale-yellow or reddish-colored translucent grains with very small amounts of calcareous material consisting of mollusk shell fragments and ostracod carapaces. Nearly all the surficial sands from the study area appear to be uniform in general character and composition.

Silty clays occur predominantly below a surficial sand cover, and are mostly light gray (N7) or light brownish gray (10 yr 6/1) in color with a few pinkish-gray (5 yr 6/2) occurrences in the northern part of the study area. The silty clay is plastic when wet and contains varying amounts of sand. The silt-clay ratio and bulk engineering properties have not been determined.
Table. Grain-size scales—soil classification (modified from U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977).

<table>
<thead>
<tr>
<th>Unified Soils Classification</th>
<th>ASTM Mesh</th>
<th>mm Size</th>
<th>Phi Value</th>
<th>Wentworth Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBBLE</td>
<td></td>
<td></td>
<td></td>
<td>BOULDER</td>
</tr>
<tr>
<td>COARSE GRAVEL</td>
<td></td>
<td></td>
<td></td>
<td>COBBLE</td>
</tr>
<tr>
<td>FINE GRAVEL</td>
<td></td>
<td></td>
<td></td>
<td>PEBBLE</td>
</tr>
<tr>
<td>coarse</td>
<td>5</td>
<td>4.0</td>
<td>-2.0</td>
<td>GRAVEL</td>
</tr>
<tr>
<td>medium</td>
<td>10</td>
<td>2.0</td>
<td>-1.0</td>
<td>very coarse</td>
</tr>
<tr>
<td>fine</td>
<td>18</td>
<td>1.0</td>
<td>0.0</td>
<td>coarse</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.5</td>
<td>1.0</td>
<td>medium</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.42</td>
<td>1.25</td>
<td>medium</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0.25</td>
<td>2.0</td>
<td>fine</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.125</td>
<td>3.0</td>
<td>very fine</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.074</td>
<td>3.75</td>
<td>very fine</td>
</tr>
<tr>
<td>SILT</td>
<td>230</td>
<td>0.062</td>
<td>-4.0</td>
<td>SILT</td>
</tr>
<tr>
<td>CLAY</td>
<td></td>
<td></td>
<td></td>
<td>CLAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0039</td>
<td>8.0</td>
<td>COLLOID</td>
</tr>
</tbody>
</table>
Additional sediment data in the form of core logs and granulometric characteristics are contained in Appendixes B and C.

2. Segment Description.

The study area is divided into 20 segments (for convenience of description), each of which is fairly uniform in bottom topography, subbottom reflector patterns, and sediment characteristics (Figs. 8 to 13). A brief segment-by-segment description of the geologic character of the area and assessment of the availability of offshore sand resources follows. High potential areas are designated in places where the sand deposits are judged to be of large volume, readily accessible, and with textural and minerological characteristics suitable for beach fill.

a. Segment 1. This segment is dominated by a large north-south trending linear shoal that fronts the northern part of the segment and merges with the shoreface in the southern half (profile 1, App. A). No cores were obtained from the segment; thus, the character of the sediment is uncertain. If the surficial layer contains suitable material, an analysis of the seismic data indicates that the thickest deposits probably occur along the western margin of the shoal near the north end of the segment.

b. Segment 2. Segment 2 includes Big Sable Point and peripheral areas to the north and south. Seismic records did not show subbottom reflectors in this area, suggesting the surficial layer is probably very thick off the main part of the point. In any case, dredging is not recommended off Big Sable Point because of the steep bottom slope and possible adverse effect on slope stability. The best prospects for obtaining sand are judged to be near the northern and southern ends of this segment where the bottom slopes are gentle and there are several ridges which may contain suitable sand. Cores 4 and 5 from the southern part of the segment contain clean, fine sand which is very uniform in size and character throughout the cores.

c. Segment 3. A smooth to jagged bottom topography prevails in segment 3 (profile 3, App. A). The blue reflector crops out or is only a few feet below the lake floor on all profiles; thus, the surficial layer appears to be thin and discontinuous. All of the cores taken in this segment (cores 1, 2, 3, 6, and 7) contain soft reddish-brown clay which either crops out or is thinly mantled by sand. The thickest sand layer occurs at the site of cores 1 and 2 where 0.6 and 1.8 meters (2 and 6 feet), respectively, of clean, medium sand overlies the clay layer. On the basis of present information the best area for further exploration in this segment is in the locale of cores 1 and 2.

d. Segment 4. The lake floor in this segment contains a number of broad smooth-surfaced ridges up to 3.0 meters (10 feet) high (profile 4, App. A). The blue reflector crops out or is very shallow in the swales between these ridges. The most promising locale for sand resources is in the southern part of the segment where the ridges have the greatest
Figure 8. Bathymetry and sand potential, segment division 1, map 1 area.
Figure 9. Bathymetry and sand potential, segment divisions 2 to 6, map 2 area.
Figure 10. Bathymetry and sand potential, segment divisions 7 to 11, map 3 area.
Figure 11. Bathymetry and sand potential, segment divisions 12, 13, and 14, map 4 area.
Figure 12. Bathymetry and sand potential, segment divisions 15 to 19, map 5 area.
Figure 13. Bathymetry and sand potential, segment divisions 19 and 20, map 6 area.
relief and the surface layer is thickest. Core 9, from a ridge cresting at 16.8 meters (55 feet) below lake level, contains 2.6 meters (8.5 feet) of clean, medium sand which may be characteristic of other ridges in the segment as well. Core 8, which lies farther seaward and to the north, contains 4.9 meters (16 feet) of clean, medium sand. The bottom topography at core 8 is seaward of the surveyed zone and is unknown.

e. **Segment 5.** Except for one low ridge and sets of sand waves with up to 1.5 meters of relief, the lake floor of segment 5 is essentially featureless (profiles 5A and 5B, App. A). Inshore, the blue reflector is generally no more than 1.5 meters below the lake floor, but becomes deeper offshore as shown in profile 5B. At the southern end of the sector (profiles 5B and 6, App. A) a reflector, which apparently lies at considerable depth to the north, appears to rise to the level of, and merge with, the blue reflector. This indicates that the rock unit which underlies the blue reflector to the north is succeeded at this point by another rock unit. Core data are not sufficient to reliably determine the lithologic character of the units directly underlying the blue reflector to the north and south of this transition point; however, from the limited data available it seems likely that the underlying unit to the north of the transition is clay while that to the south is probably glacial drift or relict lake floor sand.

f. **Segment 6.** Segment 6 includes Little Sable Point. The lake floor in this segment is steep, smooth to irregular, and includes several large ridges. The blue reflector lies mostly at 6.1 to 18.3 meters below the lake floor but comes closer to the surface in an offshore direction. Cores 10 and 11 in the segment both contain clean quartz sand ranging in size from fine to medium (core 11) to medium to coarse (core 10). Prospects for obtaining suitable sand are good throughout the segment; however, as at Big Sable Point, the steepness of the bottom slope may dictate limitations on offshore borrow operations. For this reason the southern third of the segment, where milder inshore bottom slopes prevail, is considered the best area for potential offshore sand sources.

g. **Segment 7.** Segment 7 contains a series of ridges having 1.5 to 4.6 meters (5 to 15 feet) of relief. The blue reflector is shallow or crops out between the ridges but is buried as much as 6.1 meters beneath the ridge sediments. Cores 12 and 13 taken in this segment contain predominantly fine sand. Many ridges in this area may contain abundant sand; however, most lie in more than 18.3 meters of water.

h. **Segment 8.** This is a short segment of smooth lake bottom with a 3.1- to 6.1-meter accumulation of sediment above the blue reflector. No cores were taken in this segment; however, if the surf layer is sand, a large volume of material might be obtained in the area.

i. **Segment 9.** Bottom topography in segment 9 varies from smooth to irregular. Several large ridges of up to 6.1 meters relief occur seaward of the 15.2-meter (50 feet) isobath (profile 9, App. A). The blue reflector increases from less than 1.5 meters below the lake floor out to about
-16.8-meter (-55 feet) water depths, to more than 6.1 meters below lake floor farther offshore. Cores 14 and 15 from this segment contain clean, medium sand. Good prospects for sand borrow exist throughout the segment, especially lakeward of the 15.2-meter isobath.

j. Segment 10. The lake floor in this segment is mostly smooth but contains some low ridges (profile 10, App. A). The blue reflector appears to vary from 0 to about 4.6 meters below the lake floor. Eight cores from this segment (cores 16 to 23) contain clean, fine to medium sand indicating large quantities of suitable sand are distributed throughout the segment.

k. Segment 11. Several ridges with up to 3.1 meters relief occur in segment 11 (profile 11, App. A). The blue reflector is not evident inshore, but appears offshore where it crops out between the ridges. Cores 24, 25, and 26 from this segment contain 1.2 to 3.1 meters (4 to 10 feet) of clean, medium sand overlying fine sand. The best prospects for sand appear to be in the ridges.

l. Segment 12. The lake floor in this segment is predominantly smooth; however, it is interrupted by a series of sand waves with up to 1.5 meters of relief distributed throughout the segment (profile 12, App. A). The blue reflector is not apparent over most of this segment. Cores 27 to 32 contain clean, fine to medium sand. Core 30 also has a 0.6-meter layer of sandy pea gravel. There appears to be good potential for suitable sand in this segment.

m. Segment 13. A marked change in the character of the bottom and subbottom occurs in this segment. The lake floor is smooth to irregular with relief up to 3.1 meters. The topography is much less regular than in the ridge and swale areas to the north, and the lake floor along profiles 13A and 13B (App. A) has a jagged rather than smooth texture. Sub-bottom reflectors are fragmentary or missing in most of the segment; however, on line 164 the lake floor is underlain by a section of parallel, closely spaced reflectors that are somewhat distorted (profile 13A, App. A). Cores 33 to 46 from segment 13 are predominantly sand but gray clay and silt underlie the sand layer in seven cores. Gravel occurs in four cores. The surface sand layer is thickest (3.1 meters) at core 36 which is probably the best area for obtaining sand in segment 13. The gravelly sediments which occur in cores 33, 41, 42, and 44 are heterogenous in size, mixed with sand and silt, and appear to be thin till deposits. The upper 0.6 meter in core 42 consists of clean, well-sorted granules and small pebbles. This deposit may be of value as construction aggregate.

n. Segment 14. In this segment the lake floor again becomes relatively regular and smooth but contains some ridges with up to 3.1 meters relief (profile 14A and 14B, App. A). The blue reflector is not apparent in most places and where evident it lies close to the lake floor. Cores 47 to 52 contain clean sand and the clay, silt, and gravel deposits occurring in segment 13 either do not extend into this area or were missed.
by the cores. The thickest sand deposits are probably in the ridges of the northern part of the segment.

o. Segment 15. The lake floor in segment 15 is relatively smooth and featureless. Only a few short and discontinuous subbottom reflectors appear on profiles 15A and 15B (App. A). Cores 53 to 61 were obtained in this segment. Core 54 contains very fine gray sand. The remaining cores all contain fine to medium sand with layers of sandy granules and pebbles. In cores 58 to 59 the surficial sand layer is less than 1.2 meters thick and is underlain by gray silty clay and till. The best prospects for suitable sand are near the north end and the southern third of the segment.

p. Segment 16. In segment 16 the lake floor is also relatively smooth and featureless (profile 16, App. A). The blue reflector appears to be at or very near the surface in most places. A deeper reflector which rises to the lake floor on this segment is probably the top of a shale unit cored in segment 17. All but one core from this segment (cores 62 to 66) contain a thin sand layer less than 0.5 meter (1.5 feet) thick overlying gray clay. In core 64 the sand layer is 1.7 meters (5.5 feet) thick and the locale of this core site is probably the best area for potential sand borrow. Elsewhere, prospects for obtaining large volumes of sand appear to be poor.

q. Segment 17. The dominant feature of segment 17 is a low mound with an extremely jagged surface characterized by a shale outcrop. The surface of the shale creates a strong subbottom reflector in places peripheral to the outcrop where it is buried beneath younger sediments (profile 17, App. A). All three cores (cores 67, 68, and 69) from this segment were in the shale outcrop area. None penetrated more than 0.5 meter into this highly resistant material. Little or no sand occurs in the shale outcrop area, but sand deposits may exist around the periphery.

r. Segment 18. A series of low ridges 1.5 to 3.1 meters high characterize the lake floor in this segment (profile 18, App. A). The blue reflector crops out between the ridges, but lies up to 3.1 meters beneath the ridge areas and is occasionally incised by 4.6-meter-deep channellike depressions (profile 18, App. A). Cores 70 to 73 were obtained in this segment. Core 73 contains only sand; the remaining cores contain sand overlying gray silt and clay. Limited quantities of clean sand can probably be obtained from the ridge areas. The cleanest and coarsest sand occurs in core 73 from the southern part of the segment.

s. Segment 19. The bottom topography in this segment varies from no relief to low undulating ridges and swales of about 1.5 meters relief. The blue reflector crops out in most places but may lie as much as 2.4 meters (8 feet) below some of the ridges. Cores 74 to 79 and core 85 contain mostly gray clay and silt with a surficial sand layer of 0.6 meter or less in thickness. Prospects for recovering large quantities of sand in this segment are poor. The best places for further investigation are the ridge areas in the southern part of the segment.
Segment 20. The lake floor in segment 20 is smooth to slightly undulating with low ridges up to 1.5 meters high. The blue reflector crops out throughout most of the area. Cores 81 to 93 were taken in this segment. With one exception, these cores contain a predominance of gray silt and clay covered by a thin sand veneer less than 0.6 meter thick. Core 91 contains a 1.2-meter layer of fine to very fine sand overlying the clay. A thin layer of gravel occurs at the top of cores 81 and 83, and a 0.3-meter (1 foot) layer of granules occurs at -1 meter (-3 feet) in core 84. In general, prospects for obtaining sand or gravel in quantity from this segment are poor. Some low, broad ridges which occur in the northern part of the segment are probably the best sites for further exploration.

IV. SUMMARY

The eastern shore of Lake Michigan between Manistee, Michigan, and Burns Harbor, Indiana, was surveyed to locate offshore sand deposits suitable for use in beach restoration and maintenance. Survey data consist of seismic reflection profiles along 915 kilometers (569 miles) of trackline and 93 cores up to 6.1 meters (20 feet) long. These data were from water depths ranging from about 3.7 to 37.0 meters (12 to 120 feet).

The predominant sediment types occurring in the study area are clean, fine to coarse quartz sand and silty clay. Sand is the characteristic surficial deposit. Silty clay is most characteristic of the shallow sub-bottom deposits. Clay, gravel, and till-like mixtures of silt, sand, pebbles, and cobbles occur locally. Shale occurs in one small area near New Buffalo, Michigan.

The best potential for offshore sand resources is in the area between Whitehall and Saugatuck, Michigan. Localized deposits with good potential occur in several places between Manistee and Whitehall, Michigan, and from Saugatuck to 15 kilometers (9.3 miles) south of Benton Harbor, Michigan. The area of lowest potential is that from Benton Harbor southward to Burns Harbor, Indiana, where only a thin veneer of surficial sand overlies silt and clay deposits.
APPENDIX A

SEISMIC REFLECTION PROFILES

Appendix A contains line profiles prepared from selected seismic reflection records of the study area. Profile numbers are those assigned to the coastal segment which they represent. Line locations are shown in Figures 2 to 7. The vertical scales were constructed using an assumed sound velocity of 1,463 meters (4,800 feet) per second in the water column and 1,658 meters (5,440 feet) per second in the sediment column. Horizontal scales vary according to the speed of the survey vessel; however, line lengths can be estimated by reference to the trackline plots in Figures 2 to 7. The blue reflector is indicated by the letter B inserted along the reflector line (where the reflector is coincident with the sea floor, the B is inserted on the sea floor line).
Profile 8
Line 110

Profile 9
Line 106

LEGEND

Navigation fix 2371
Lake floor
Subfloor reflectors
Blue reflector

Note: Horizontal scale is variable
(see Figs. 2 to 7 for plot)

Note: WS (Water Surface)

Profile 10
Line 150

Profile 11
Line 155
APPENDIX B

CORE LOGS

Appendix B contains visual logs of the cores taken during the ICONS survey. To avoid repetition, sediments falling into the general category of those described as surficial sands in Section III,1,c of the text are designated by the letter A in parentheses following the description; sediments falling into the general category of the gray silty clays (described in the same Sec.) are similarly designated by the letter B. On the graphic logs, vertical divisions between lithologies are indicated by segment lines. The bottom of the core is indicated by a segment line underlain by the letter b. Water depths (WD on core logs) are in feet.
CORE 43
WD 40
Fine quartz sand

CORE 44
WD 30
Fine quartz sand (A)
Gray, silty fine quartz sand
Light-gray silty clay (B)

CORE 45
WD 20
Coarse quartz sand (A)
Medium quartz sand (A)
Light-gray silt
Light brownish-gray, silty very fine sand

CORE 46
WD 9
Medium quartz sand (A)
Light-gray silty clay (B)

CORE 47
WD 64
Slightly silty fine quartz sand (A)
Light-gray silty clay (B)

CORE 48
WD 57
Medium quartz sand (A)
Light brownish-gray silt
Fine quartz sand (A)
CORE 67
WD 53
Light greenish-gray (Munsell 5 GY 7/1) shale

CORE 68
WD 39
Light greenish-gray (Munsell 5 GY 7/1) shale

CORE 69
WD 43
Light greenish-gray (Munsell 5 GY 7/1) shale

CORE 70
WD 31
Fine quartz sand (A)

Light-gray silty clay (B)

Gray coarse quartz sand, with rock granules and pebbles

CORE 71
WD 47
Medium quartz sand (A)

Silty fine sand

Medium quartz sand (A)

Light-gray silty clay (B)

Earthy, brownish clay with small snail shells

CORE 72
WD 52
Fine quartz sand (A)

Slightly silty, very fine to fine quartz sand
CORE 91
WD 55
Silty, very fine to fine sand
Light-gray silty clay (B)

CORE 92
WD 51
Fine quartz sand (A)
Light-gray silty clay (B)

CORE 93
WD 45
Light-gray silty clay (B)
APPENDIX C

GRANULOMETRIC DATA

This appendix contains size distribution data for selected samples extracted from the Lake Michigan ICONS cores. Size data on sand samples determined by the fall velocity method in a Rapid Sediment Analyzer are presented in Table C-1. Table C-2 contains size distribution data for selected sand and gravel samples determined by standard sieve analysis.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table C-1. Distribution of size classes by frequency percentages.
Table C-1. Distribution of size classes by frequency percentages.—Continued

<table>
<thead>
<tr>
<th>REFERENCE NO.</th>
<th>SIZE CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>
Table C-2. Sieve data in cumulative percent of stated diameter.

<table>
<thead>
<tr>
<th>Core No.</th>
<th>Interval<sup>1</sup></th>
<th>16.0</th>
<th>11.1</th>
<th>7.9</th>
<th>5.6</th>
<th>4.0</th>
<th>2.8</th>
<th>2.0</th>
<th>1.4</th>
<th>1.0</th>
<th>0.710</th>
<th>0.500</th>
<th>0.354</th>
<th>0.250</th>
<th>0.177</th>
<th>0.125</th>
<th>0.088</th>
<th>0.063</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-8</td>
<td>6.0</td>
<td>7.5</td>
<td>10.7</td>
<td>13.4</td>
<td>16.5</td>
<td>20.3</td>
<td>23.4</td>
<td>25.4</td>
<td>28.0</td>
<td>29.7</td>
<td>40.0</td>
<td>65.0</td>
<td>89.5</td>
<td>96.7</td>
<td>98.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-2</td>
<td>3.1</td>
<td>5.4</td>
<td>10.4</td>
<td>15.3</td>
<td>22.2</td>
<td>27.8</td>
<td>31.3</td>
<td>33.1</td>
<td>36.5</td>
<td>43.6</td>
<td>73.3</td>
<td>94.2</td>
<td>99.8</td>
<td>99.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>-4</td>
<td>5.9</td>
<td>30.0</td>
<td>44.7</td>
<td>52.6</td>
<td>58.0</td>
<td>61.7</td>
<td>65.1</td>
<td>68.0</td>
<td>72.4</td>
<td>88.3</td>
<td>92.7</td>
<td>94.0</td>
<td>96.3</td>
<td>98.4</td>
<td>98.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Top</td>
<td>35.0</td>
<td>36.6</td>
<td>39.1</td>
<td>41.6</td>
<td>46.0</td>
<td>49.8</td>
<td>53.4</td>
<td>57.8</td>
<td>63.1</td>
<td>69.2</td>
<td>77.3</td>
<td>86.5</td>
<td>93.4</td>
<td>96.0</td>
<td>97.2</td>
<td>98.1</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-8</td>
<td>6.6</td>
<td>9.6</td>
<td>16.2</td>
<td>21.4</td>
<td>27.4</td>
<td>31.4</td>
<td>35.8</td>
<td>39.6</td>
<td>42.7</td>
<td>47.7</td>
<td>57.8</td>
<td>69.8</td>
<td>83.6</td>
<td>93.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Top</td>
<td>38.8</td>
<td>46.1</td>
<td>50.4</td>
<td>52.2</td>
<td>55.1</td>
<td>58.4</td>
<td>59.9</td>
<td>61.1</td>
<td>61.9</td>
<td>63.1</td>
<td>66.6</td>
<td>74.0</td>
<td>86.2</td>
<td>92.4</td>
<td>95.6</td>
<td>98.0</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>-1</td>
<td>40.5</td>
<td>45.4</td>
<td>50.0</td>
<td>52.0</td>
<td>55.0</td>
<td>59.5</td>
<td>61.5</td>
<td>62.7</td>
<td>63.7</td>
<td>64.8</td>
<td>66.8</td>
<td>71.4</td>
<td>79.6</td>
<td>85.5</td>
<td>90.7</td>
<td>93.7</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Top</td>
<td>21.7</td>
<td>20.4</td>
<td>22.3</td>
<td>24.2</td>
<td>26.1</td>
<td>28.2</td>
<td>31.1</td>
<td>33.4</td>
<td>35.3</td>
<td>36.7</td>
<td>39.6</td>
<td>41.6</td>
<td>42.9</td>
<td>43.8</td>
<td>44.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>-1</td>
<td>1.4</td>
<td>4.9</td>
<td>5.8</td>
<td>7.9</td>
<td>10.7</td>
<td>14.4</td>
<td>18.9</td>
<td>24.9</td>
<td>35.0</td>
<td>49.6</td>
<td>71.4</td>
<td>84.6</td>
<td>96.0</td>
<td>99.2</td>
<td>99.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>-8</td>
<td>8.2</td>
<td>9.1</td>
<td>10.6</td>
<td>12.4</td>
<td>15.6</td>
<td>19.9</td>
<td>26.6</td>
<td>33.4</td>
<td>37.4</td>
<td>44.5</td>
<td>67.0</td>
<td>83.1</td>
<td>93.2</td>
<td>99.5</td>
<td>99.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>-2</td>
<td>1.9</td>
<td>4.0</td>
<td>6.5</td>
<td>10.1</td>
<td>14.1</td>
<td>19.1</td>
<td>25.4</td>
<td>36.1</td>
<td>53.0</td>
<td>69.3</td>
<td>77.7</td>
<td>85.0</td>
<td>98.5</td>
<td>99.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>-6</td>
<td>3.0</td>
<td>5.7</td>
<td>7.3</td>
<td>10.2</td>
<td>13.2</td>
<td>17.1</td>
<td>22.0</td>
<td>31.0</td>
<td>43.1</td>
<td>54.6</td>
<td>67.2</td>
<td>79.7</td>
<td>94.9</td>
<td>99.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>-8</td>
<td>0.42</td>
<td>1.9</td>
<td>3.6</td>
<td>6.4</td>
<td>10.6</td>
<td>17.2</td>
<td>27.6</td>
<td>40.8</td>
<td>53.6</td>
<td>62.1</td>
<td>71.3</td>
<td>84.5</td>
<td>96.7</td>
<td>99.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>-2</td>
<td>4.4</td>
<td>5.1</td>
<td>8.0</td>
<td>10.1</td>
<td>13.8</td>
<td>18.6</td>
<td>23.1</td>
<td>34.7</td>
<td>57.0</td>
<td>68.2</td>
<td>76.9</td>
<td>85.0</td>
<td>93.9</td>
<td>99.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>-3</td>
<td>0.54</td>
<td>0.90</td>
<td>1.5</td>
<td>2.8</td>
<td>5.9</td>
<td>13.6</td>
<td>28.7</td>
<td>51.5</td>
<td>69.1</td>
<td>87.7</td>
<td>92.2</td>
<td>97.5</td>
<td>99.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>-12</td>
<td>1.9</td>
<td>4.5</td>
<td>11.4</td>
<td>25.2</td>
<td>43.8</td>
<td>56.6</td>
<td>63.8</td>
<td>67.5</td>
<td>70.7</td>
<td>74.4</td>
<td>77.4</td>
<td>80.8</td>
<td>83.6</td>
<td>88.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Top</td>
<td>27.0</td>
<td>55.9</td>
<td>68.9</td>
<td>74.3</td>
<td>78.0</td>
<td>82.1</td>
<td>85.8</td>
<td>89.7</td>
<td>92.9</td>
<td>95.5</td>
<td>96.9</td>
<td>97.7</td>
<td>99.2</td>
<td>99.5</td>
<td>99.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Top</td>
<td>40.7</td>
<td>47.6</td>
<td>56.4</td>
<td>62.3</td>
<td>66.3</td>
<td>69.9</td>
<td>71.8</td>
<td>73.5</td>
<td>74.5</td>
<td>76.1</td>
<td>78.2</td>
<td>81.2</td>
<td>88.8</td>
<td>96.8</td>
<td>99.4</td>
<td>99.7</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>-4</td>
<td>3.3</td>
<td>7.7</td>
<td>18.5</td>
<td>38.3</td>
<td>62.4</td>
<td>71.3</td>
<td>74.8</td>
<td>77.5</td>
<td>79.3</td>
<td>82.7</td>
<td>86.2</td>
<td>93.4</td>
<td>99.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Top</td>
<td></td>
</tr>
</tbody>
</table>

¹Distance in feet from top of core.
Meisburger, Edward P.
Sand resources of southeastern Lake Michigan / by Edward P.
Coastal Engineering Research Center ; Springfield, Va. : available
61 p. : ill. ; 27 cm. - (Miscellaneous report - U.S. Coastal
Engineering Research Center ; no. 79-3)
About 2,072 square kilometers of the eastern shore of Lake Michigan
between Manistee, Michigan, and Burns Harbor, Indiana, was surveyed to
assess potential sand and gravel resources. Silt and clay deposits are
the most common subbottom sediment type. Results showed that the high-
est potential for sand is in the area between Whitehall and Saugatuck,
Michgian.
3. Seismic reflection. I. Title. II. Williams, S. Jeffress, joint
Miscellaneous report no. 79-3.
TC203 .US81mr no. 79-3 627

Meisburger, Edward P.
Sand resources of southeastern Lake Michigan / by Edward P.
Coastal Engineering Research Center ; Springfield, Va. : available
61 p. : ill. ; 27 cm. - (Miscellaneous report - U.S. Coastal
Engineering Research Center ; no. 79-3)
About 2,072 square kilometers of the eastern shore of Lake Michigan
between Manistee, Michigan, and Burns Harbor, Indiana, was surveyed to
assess potential sand and gravel resources. Silt and clay deposits are
the most common subbottom sediment type. Results showed that the high-
est potential for sand is in the area between Whitehall and Saugatuck,
Michigan.
3. Seismic reflection. I. Title. II. Williams, S. Jeffress, joint
Miscellaneous report no. 79-3.
TC203 .US81mr no. 79-3 627